Microfabricated Microbial Fuel Cell Arrays Reveal Electrochemically Active Microbes
نویسندگان
چکیده
Microbial fuel cells (MFCs) are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.
منابع مشابه
Performance of Klebsiella oxytoca to generate electricity from POME in microbial fuel cell
This study is aimed to evaluate the electricity generation from microbial fuel cell (MFC) and to analyze the microbial community structure of city wastewater and anaerobic sludge to enhance the MFC performance. MFCs, enriched with palm oil mill effluent (POME) were employed to harvest electricity by innoculating of Klebsiella oxytoca, collected from city wastewater and other microbes from anaer...
متن کاملHigh shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell
In many microbial bioreactors, high shear rates result in strong attachment of microbes and dense biofilms. In this study, high shear rates were applied to enrich an anodophilic microbial consortium in a microbial fuel cell (MFC). Enrichment at a shear rate of about 120 s(-1) resulted in the production of a current and power output two to three times higher than those in the case of low shear r...
متن کاملA microfluidic concentrator array for quantitative predation assays of predatory microbes.
We present a microfabricated concentrator array device that makes it possible to quantify the predation rate of Bdellovibrio bacteriovorus, a predatory microbe, toward its prey, Escherichia coli str. MG1655. The device can accumulate both prey and predator microbes sequentially within a series of concentrator arrays using the motility of the microbes and microfabricated arrowhead-shaped ratchet...
متن کاملSustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species
Microbial fuel cell (MFC) attracts growing efforts as a kind of environmentally friendly biotechnology. In this study, the aerobic bacterium Bacillus subtilis has been utilized in a dual-chambered upflow microbial fuel cell fueled with actual domestic wastewater. The MFC system was continuously operated for 75 days. The performance of the UMFC was mainly evaluated in accordance with the COD rem...
متن کاملA novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli.
A mediatorless microbial fuel cell based on the direct biocatalysis of Escherichia coli shows significantly enhanced performance by using bacteria electrochemically-evolved in fuel cell environments through a natural selection process and a carbon/PTFE composite anode with an optimized PTFE content.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009